

CORPORATE PRESENTATION

ABOUT US

85+

Material Options

24
MPIF
Awards

6000+

MIM Parts

Variety

650+ Customers Globally

METAL INJECTION MOLDING PLANTS

Over 8,90,000 sq. ft. of MIM manufacturing in multiple locations in 2 countries

Manufacturing Plant – 1 Hoskote, Bengaluru

MIM Manufacturing Plant – 2
Doddaballapur, Bengaluru

MIM Manufacturing Plant – 3 INDO-MIM Inc., USA

INTEGRATED VALUE CHAIN

One-Stop Solution Provider

MIM

METAL INJECTION MOLDING

Largest installed capacity

CIM

CERAMIC INJECTION MOLDING

ISO 9001 and ISO 14001 Certified

IC

INVESTMENT CASTING

Temperature and **Humidity controlled**

PMG

PRECISION MACHINING

Aerospace, Oil & Gas, Medical

SPECIAL

SURFACE

TREATMENT

AS9100 & NADCAP Approved

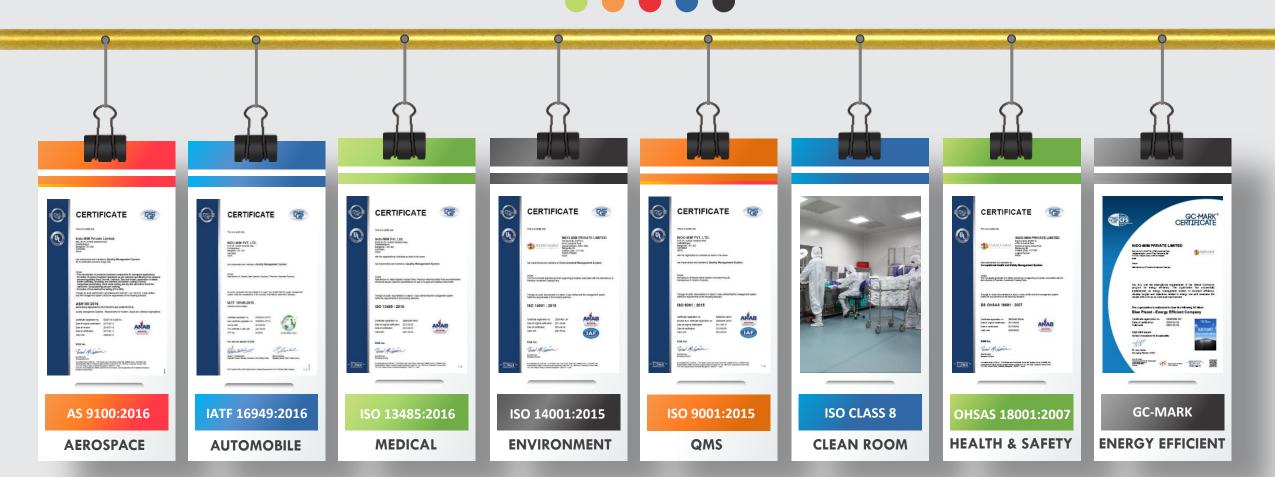
PROCESSES

MBJ

METAL BINDER JET 3D PRINTING

New Addition to INDO-MIM

GLOBAL PRESENCE





CERTIFICATIONS

PRODUCT PORTFOLIO

AUTOMOTIVE

Turbochargers, sensors, pumps, seating, door mechanism, nozzle, etc.

CONSUMER

Fashion accessory,
Mountaineering, Lock
parts, Home appliances,
Personal care etc.

DEFENSE

Firearm parts, sights

AERO & MEDICAL

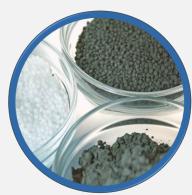
Surgical parts,
Staplers, Implants,
Brackets

ROADMAP - AUTOMOTIVE

MARKET DRIVERS - AUTOMOTIVE

MINIATURIZATION

- 1. Lower displacement engines
- 2. Enhanced power requirements without lowering fuel economy


INTEGRATION

- 1. Integrated part no joining operations
- 2. Weight reduction

MATERIAL

- 1. Tightening emission standards
- 2. Superior functionality
- 3. High temperature, High endurance resistance

Adding value by contributing to performance enhancement via technology innovation to meet OEM requirements

CASE STUDIES

CASE STUDY - PISTON COOLING NOZZLE

APPLICATION - PISTON COOLING NOZZLE

- Net shape of hole directly formed in MIM even for 0.8 to 1 mm dia.
- No presence of burr.

PRODUCT DESCRIPTION

- Material :- MIM 4605 (Medium Carbon Steel) with Heat treatment
- Weight :- 5g
- Segment :- Automotive
- Annual Required :- 120K
- Inconsistency in machined hole dimension & position.
- Additional problem of burr removal.

SOLUTION

CASE STUDY - TRANSMISSION SYSTEM

- MIM can offer 98% of the theoretically density, hence higher strength in the components.
- Could be produced in large volume
- Entire profile manufactured through MIM.

- Material :- MIM8620(Low carbon steel with case hardening)
- Weight :- 7g
- Segment :- Automotive
- Annual requirements:- 600K

- Conventionally manufactured through the press and sinter method, Parts have lower strength due to the low density (80%).
- Breakage of parts due to reduced strength.

SOLUTION

CASE STUDY - VALVE BRIDGES

- Manufactured through MIM without any machining
- Coring provided to reduce the weight & improve efficiency

PRODUCT DESCRIPTION

- Material :- MIM 4605 (Medium Carbon Steel) with Heat treatment
- Weight :- 25g
- Segment :- Automotive
- Annual Requirement :- 180K

 Manufacturing through Forging required multiple machining post forging.

SOLUTION

CASE STUDY - MIM IN TRANSMISSION SYSTEM

- Complete profile is achieved in the tool.
- Could be produced in large volume.

- Material :- MIM 4605 (Medium Carbon Steel)
- Weight :- 11 g
- Segment :- Automotive
- Annual requirements: 140k

- Oval hole perpendicular to the large diameter hole.
- Complicated profile with chamfer hole.
- Difficult to achieve complete profile in a single operation.

SOLUTION

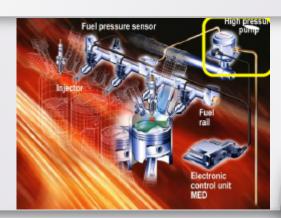
CASE STUDY - FUEL PUMP ACTUATION

APPLICATION – FUEL ACTUATION

- Entire profile manufactured through MIM.
- Large batch production with auto rewinding mechanism for thread in tool.

PRODUCT DESCRIPTION

- Material :- MIM 4605 (Medium Carbon Steel)
- Weight :- 9g
- Segment :- Automotive
- Annual Requirement :- 3600K


- 6 separate machining operations for every part.
- Problem faced in repeatability and burr formation.
- High machining cost.

SOLUTION

CASE STUDY - GDI PUMP ASSEMBLY

- Internal geometry without burrs achieved through MIM tooling mechanism
- Large batch output with high repeatability

PRODUCT DESCRIPTION

- Material :- SS 440 C (Stainless Steel)
- Weight :- 4g
- Segment :- Automotive
- Annual Requirement :- 300K

- Complicated internal profile for conventional process
- Very large quantity requirement

CASE STUDY - PIN ASSEMBLY

APPLICATION – 2 WHEELER STARTER SYSTEM

- Integral design from MIM eliminated joining operation.
- Custom material developed in MIM provided higher strength.

PRODUCT DESCRIPTION

- Material :- S7 (Tool grade steel)
- Weight :-2g
- Segment :- Automotive
- Annual Requirement :- 60K
- Pin press fit to sleeve.
- Breakage/ejection of pin resulting in field failure.

SOLUTION

CASE STUDY — STEEL TOP PLATE

APPLICATION – SHOCK ABSORBER

 Component manufactured close to net shape, with surface grinding to achieve flatness (10μm) and facing operation to achieve height tolerance.

PRODUCT DESCRIPTION

- Material :- MIM 4605 (Medium Carbon Steel)
- Weight :- 12g
- Segment :- Automotive
- Annual Requirement :- 10K

- Complicated profile with 18 holes of dia. 3.75 mm and 6 thin ribs of 1.5 mm.
- Challenging to fill sections completely in the molding stage.

CASE STUDY - VANE LEVER

APPLICATION – VANE LEVER-TURBOCHARGER

- Near net shape achieved directly from the tool.
- Nitronic 60 proposed for high temperature application.

PRODUCT DESCRIPTION

- Material :- Nitronic 60 (Super Alloy)
- Weight :- 4gm
- Segment :- Automotive
- Annual Requirement :- 330K
- Profile perpendicularity with respect to datum.
- High temperature application.

SOLUTION

CASE STUDY - HYDRAULIC PROPORTION VALVES

APPLICATION – HYDRAULIC PROPORTION VALVES

- Integrated parts without joining operations
- Compact parts with reduction in weight

PRODUCT DESCRIPTION

- Material :- SS 17-4PH and MIM 4605 (medium carbon steel) with heat treatment
- Weight :- 26g to 32g
- Segment :- Automotive
- Annual Requirement :- 360K
- Multiple manufacturing operations
- Joining operations for assembly

SOLUTION

CASE STUDY - DECOMPRESSION LEVER

- Higher strength through MIM even with coring to reduce weight.
- MIM process suited for large batch production.

PRODUCT DESCRIPTION

- Material :- Low Carbon steel with Case Hardening
- Weight :- 22g
- Segment :- Automotive
- Annual Requirement :- 28K

- Sintered part strength insufficient to withstand application Torque.
- Large quantity requirement.

SOLUTION

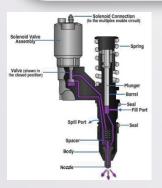
CASE STUDY - CNG REDUCER

APPLICATION – CNG REDUCER

This component is a part of sequential CNG reducer

- Net shaped obtained in Molding tool. Avoiding multiple operations like machining, turning
- Capable to produce in large volume.
- Uniform density.

SOLUTION


PRODUCT DESCRIPTION

- Material :- MIM4630(Hardened & Tempered Steel)
- Weight :- 8g
- Segment :- Automotive
- Annual Requirement :- 40K
- Difficult to manufacture the curved surface through other conventional process.
- Secondary operations for internal thread.

CASE STUDY - FUEL INJECTION

APPLICATION – FUEL INJECTION

This part is used as a spacer in the Fuel Injector of heavy duty engine.

- Cost benefit of 50% after migrating to MIM.
- Narrow tolerance of 5 micron flatness and parallelism achieved by double disc fine grinding.
- Indo-MIM has offered XEV- a non magnetic super alloy.

SOLUTION

PRODUCT DESCRIPTION

- Material :- MIM XEV(Super Alloy)
- Weight :- 4g
- Segment :- Automotive
- Annual Requirement :- 180K

- Conventional ManufacturingProcess Fine blanking +Machining
- Cost and lead time was more because of multiple operations.
- High temperature application.

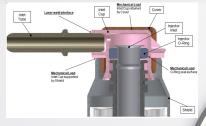
CASE STUDY - STARTER MOTOR WEIGHT

 MIM parts attained up to 98% of theoretical density

PRODUCT DESCRIPTION

- Material :- Low Carbon Steel with Case Hardening
- Weight :- 5.5g
- Segment :- Automotive
- Annual Requirement :- 480K

Insufficient density from conventional press & sinter method


SOLUTION

CASE STUDY - REDUCTANT DOSING UNIT

APPLICATION – EXHAUST SYSTEM

- Migration from machining to MIM eliminating several machining operations
- Good repeatability due to near net shape formation in MIM

PRODUCT DESCRIPTION

- Material :- MIM316L
- Weight :- 7g
- Segment :- Automotive
- Annual Requirement :- 1200K

- Profile requiring critical machining
- Inconsistency in dimensional accuracy over large quantities

SOLUTION

CASE STUDY - GEAR ASSEMBLY

APPLICATION – GEARS FOR SUV DOOR

 Component molded as a single assembly eliminating the joining operation and improving strength.

PRODUCT DESCRIPTION

- Material :- MIM4605(Medium carbon steel)
- Weight :- 14g
- Segment :- Automotive
- Annual Requirement :- 240K

- Gear and pin machined separately and welded to make a single component.
- Welding area prone to fracture due to Torque

SOLUTION

CASE STUDY - GEAR ASSEMBLY

APPLICATION – GEARS FOR SUV DOOR

Parts assembles in Collapsible roof system of Convertible Car

- Full designed for the MIM
- Less Lead time
- Better tolerance control

PRODUCT DESCRIPTION

- Material :- MIM17-4PH
- Weight :- 34g
- Segment :- Automotive
- Annual Requirement :- 200K

 Complex Profile, difficult to manufacture through material Removal process.

SOLUTION

CASE STUDY - COLLAPSABLE ROOF

APPLICATION – COLLAPSABLE ROOF

Parts assembles in Collapsible roof system of Convertible Car

- Plastic molded over the MIM part for the functionality of mechanism.
- The cost saving is around 30%.
- Solid Film Lubrication coating for better movement of the part.

SOLUTION

PRODUCT DESCRIPTION

- Material :- MIM17-4PH
- Weight :- 14g
- Segment :- Automotive
- Annual Requirement :- 200K

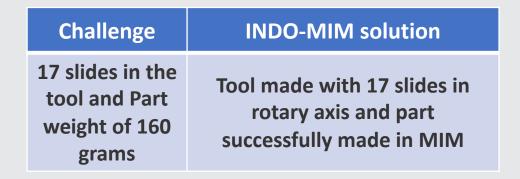
Strength required for the part with plastic over molding.

CASE STUDY - STEERING MECHANISM SENSOR

APPLICATION – POWER STEERING UNIT

It is a part of sensor which measures the oil pressure in the power-steering unit

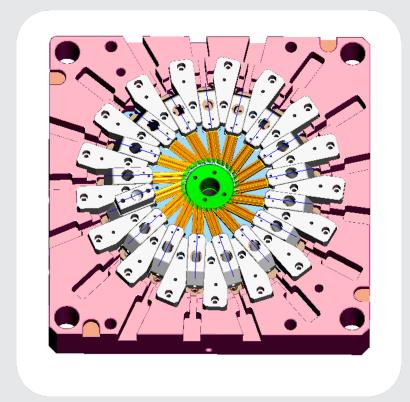
- Complicated profile, difficult to achieve in other manufacturing process
- Cracks in the thin wall after the crimping process


PRODUCT DESCRIPTION

- Material :- MIM17-4PH
- Weight :- 50g
- Segment :- Automotive
- Annual Requirement :- 250K

- Near net shape gives all the complex profile in tool itself.
- Reproducibility of good parts

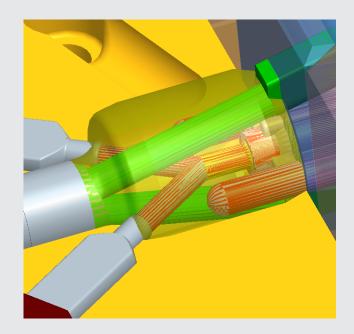
SOLUTION



Market Segment

Automotive

Pictorial image of Tool Design

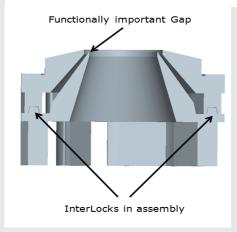


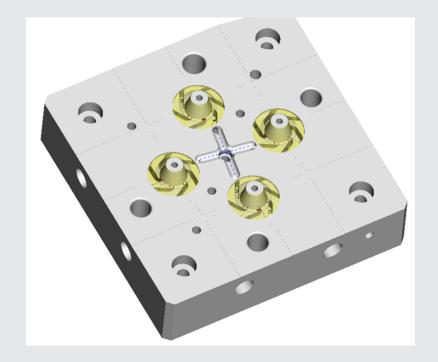
Challenge	INDO-MIM solution
Y junction hole cross section	Tool made with 6 slides for all the cross holes

Market Segment

Automotive

Pictorial image of Tool Design




Market Segment

Automotive

Pictorial image of Tool Design

Challenge	INDO-MIM solution
Part weight was more and had more thickness	By providing coring there was reduction of weight in the part at least by 20% compared to existing process

Market Segment	Automotive
Application	Fork Shift (2 wheeler)

THANK YOU

